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AN AUGMENTED COMPUTER USER LOGIN AUTHENTICATION USING 
CLASSIFYING REGIONS OF KEYSTROKE DENSITY NEURAL NETWORK 
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BACKGROUND OF THE INVENTION 

Authentication of users is important to prevent unauthorized access to computer systems 

and networks. Many studies show keystroke dynamics can be used to uniquely identify users. A 

study, sponsored by National Bureau of Standards in 1980, and conducted by Stanford Research 

Institute for keystroke-based authentication reported 98% authentication when the users type in 

their ids and passwords alone [BP01]. In 1980, Rand Corporation concluded the practicality of 

typewriter keyboard dynamics. Barton and Barton, in 1984, suggested the use of keyboard 

characteristics in the determination of passwords [L91]. In 1985, observations about the keying 

patterns of telegraph operators showed each operator exhibited a distinct keying pattern (seen in 

[UW85]). 

Leggett et al. [LW88], M. Brown et al. [BR93], Monrose and Rubin [MR97], Robinson et 

al. [RJ98], Leggett et al. [L91], Bleha et al. [BSH90] have developed methods based on 

keystroke dynamics for verification of users with successful results. Gaines et al. [GLPN80], and 

Young et al. [YH89] have patents for user identification based on keystroke dynamics. Products 

based on keystroke latencies, like ‘BioPassword,” promise 100% accurate authentication based 

on keystroke latency [BP01].  

 

SUMMARY OF THE INVENTION 

We present an authentication system using classifying regions of keystroke density based 

on a neural network architecture with two types of connections: (1) weight vector W and (2) 

dispersion vector V. In the learning phase, the weight vector W adapts to users’ keystroke 

exemplars, and dispersion vector V adapts to dispersion in the users’ keystrokes. Here W 

represents users’ keystroke pattern, and V represents the radius for the regions of density of 
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users’ keystrokes. The system consists of three phases: (1) training, (2) validation, and (3) 

testing. The system learns W and V during training, and adjustment of parameters SF and PS 

(see Section 3) is done during validation. During testing, classification results in strengthening 

the vector W, thereby adapting to changing users’ typing pattern. We achieved up to individual 

0% IPR and 0% FAR. Our highest results are 1.36% IPR and 2.31% FAR. These results compare 

favorably to the results reported in the literature [BR93] [BSH90] [JG90] [LW88] [UW85]. 

The significant contributions of our approach outlined below. 

• A novel technique for user classification. From the perspective of fundamental research, 

this work introduces new neural architecture. From the application perspective, it 

provides a new approach to build classification systems. 

• Unique formation of input vector not considered in earlier studies.  

• Variability-weights keep track of variability in the key-stroke patterns. Weights form an 

individual cluster-mean of each key-stroke component. 

• The network adapts to the change in typing patterns because the NN learns during 

classification (no need to re-train the network as the typing characteristics change). 

• Addition and deletion of users does not affect the NN connection for other users, 

resulting in no alteration of weights of existing users. This results in fast addition and 

deletion of users. 

• Security can be enhanced or relaxed based on the Scale Factor (SF) and ‘percentage-

success’ (PS) values. 

 

DETAILED DESCRIPTION OF THE INVENTION 

The rest of the paper is organized as follows: Section 2 explains the data collection and 

processing; Section 3 explains the system architecture; Section 4 gives the results; and Section 5 

concludes the paper.   

 

1. Data Collection and Processing 

Users select their user-id any string with which they are familiar, such as name, email id, 

etc., because the speed and pattern of typing becomes consistent as one types a string repeated 
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number of times. We restricted the password to a minimum of six characters while no minimum 

length was enforced for user-id.   

2.1 Construction of Input Vector 

The timestamp of ‘key-press’ and ‘key-release’ of every letter is recorded as the 

reference signature. For example the reference signature for the substring ‘vir’ is recorded as 

“KP V 2937531 ; KR V 2937640 ; KP I 2937843 ; KR I 2937921 ; KP R 2938156 ; KR R 

2938250 ;” . ‘KP’ stands for key-press, ‘V’ is the letter being pressed, and the 2937531 is the 

timestamp when it was pressed, followed by the delimiter ‘;’. Similarly ‘KR’ stands for key-

release, ‘V’ is the letter being released, and the 2937640 is the timestamp when it was released, 

followed by the delimiter ‘;’.  

From the timestamp of key-press time and key-release time of the characters typed the 

following three parameters are found: (1) ‘key-press time’, (2) ‘key-latency’ between key-press-

timestamps, (3) and ‘key-latency’ between key-release-timestamps. Figure 1 shows the 

calculation of these three parameters. The ‘key-press’ time (KPT) is the amount of time (in 

milliseconds) a key is held pressed. Since KP and KR is being calculated, we have two different 

‘key latency’ times, one is the time difference between two successive KP times, and the other is 

the time difference between two successive KR times. We name the former one as ‘key latency 

of key press time’ (KLKPT) and the later as ‘key latency of key release time’ (KLKRT).  

 

Figure 1.  Key-press time and key-latency time calculations for “AB” key presses. 

We do not consider all the KPT, KLKPT, and KLKRT of the reference signatures for 

feeding to the NN. Spaces between words are not considered [LW88] [UW85]. Only up to first 
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six characters of a word are considered [seen in UW85]. For the user-id seven key latency values 

are considered. For single worded user-id, first seven latencies between first eight characters are 

considered; for multiword user-id, five latencies from the first word and two from the second 

word are considered. If the latencies fall short of seven latencies due to user-id variation in 

length, then last latency is repeated until seven latencies are achieved. For example, in user-id 

string "sadeep moorthiyedath", the latencies are “sa, ad, de, ee, ep, mo, oo”. For user-id ‘vir 

phoha” the latencies are “vi, ir, ph, ho, oh, ha, ha”, the last latency is repeated twice to get seven 

latencies. Since there are KLKPT and KLKRT latencies, we have 14 latencies to consider, seven 

from each. For a string of length ‘n’ there exists ‘n-1’ latencies and ‘n’ key presses. Since user-id 

can have two words, we consider altogether nine key-press times. If the keys fall short of nine 

key-presses, the last key-press is repeated until nine. From the user-id we altogether consider 23 

keystroke pattern values (nine key-presses and 14 key latencies). 

Since password length is restricted to a minimum six characters, we consider all the six 

key press times and five key latency times making it altogether 16 key pattern values. For the 

common-string, ‘master of science in computer science’ nine latencies, first five latencies from 

the word ‘master’, one from ‘of’, and first three latencies from ‘science’ are considered. 12 key-

press times, six from ‘master’, two from ‘of’, and first four from ‘science’ are considered. 

Altogether 30 key patterns are considered.  

These different key patterns form a vector of 69 values and is obtained as follows. For the 

following ‘uid’ means user-id, ‘p’ means password, ‘cs’ means common-string. User id key 

pattern = {uid-KPT, uid-KPKPT, uid-KPKRT} which is of length 23 (9+7+7). Password-key-

pattern = {p-KP, p-KPKPT, p-KPKRT} which is of length 16 (6+5+5). Common-string-key-

pattern = {cs-KP, cs-KPKPT, cs-KPKRT} which is of length 30 (12+9+9). The complete key 

pattern consists of Key pattern vector = {uid key-pattern, password-key-pattern, common-string-

key-pattern}. This Key-pattern vector is of length 69 (23=9+7+7, 16 = 6+5+5, 30) and forms the 

input to the NN, during training of reference signature and classification of user during login. 

2.2 Selection of six best representative vectors  

Out of the nine sample reference signatures, we choose six vectors as follows. We used six 

vectors, following the study ([JG90] see page 174, item 3), however the method to select these 
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vectors is our own. The NN with a one dummy output node is trained on all the 9 reference 

vectors. We sort the Euclidean distance between the input vectors X and weight vectors Wdummy, 

and choose the six closest, that is the six vectors which have the smallest Euclidean distance.  It 

implies considering those reference signature that have less degree of variability among 

themselves. These 6 original vectors then form the inputs to the NN for training the particular 

user node.  

 

2. Neural Network Architecture 

The NN is a two layered network with ‘69’ input nodes I and ‘n’ output nodes Y. Every input 

node is connected to every output node via weights wij, where ‘i’ is the input node and ‘j’ is the 

output node.  

(a) NN with one user.

. . . . . . . . .

. . . . . . wij weight connections

vij variablity-weight 
connections

1/0 1/0 1/0 1/01/0

x1 x69x2 x1 x69x2 x1 x69x2

Input vector X Input vector X Input vector X

y1 y1 y2
y1 yn

i1 i2 i69 i1 i2 i69 i1 i2 i69

i1, i2, …, i69: Input Nodes

y1, y2, …, y69: output Nodes

(b) NN with two user. (c) NN with n users.(a) NN with one user.

. . . . . . . . .

. . . . . . wij weight connections

vij variablity-weight 
connections

1/0 1/0 1/0 1/01/0

x1 x69x2x1 x69x2 x1 x69x2x1 x69x2 x1 x69x2x1 x69x2

Input vector X Input vector X Input vector X

y1 y1 y2
y1 yn

i1 i2 i69 i1 i2 i69 i1 i2 i69

i1, i2, …, i69: Input Nodes

y1, y2, …, y69: output Nodes

(b) NN with two user. (c) NN with n users.  
Figure 2.  Neural Network Architecture of key-stroke classification system. Addition (or 

deletion) of users do not affect other users. 
 

The weight vector Wj = {w1j, w2j, …, w69,j} consists of all the weight connecting the 

input nodes to the output node ‘j’. Apart from the weights, every input node is connected to 

every output node via variability-weights Vj= {v1j, v2j, …, v69,j}. Variability-weight vij connects 

ith input node to jth output node, and vector Vj consists of variability-weights connecting all input 

nodes to output node ‘j’. The input vector X has 69 components. One output node is assigned per 

user, and additional output nodes can be added as and when new users register with the system. 

Figure 2(a) shows the weight connections of NN for one user, Figure 2(b), when another user is 
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added, and Figure 2(c) for n users. 

Figure 3 shows the algorithm of the NN for training. During training, six input vectors 

( 61;691}{ ≤≤≤≤= jitT ij  and Tk = {t1k, t2k, …,t69,k} [because there are six training vectors] of 

the user’s keystroke patterns form the inputs. Weights are updated according to the rule 

wij = wij(old) + ηtrain(Tk - Wj);                            

Where ηtrain is the learning factor used during training. ηtrain is decreased by α in each iteration 

during training. Training of ‘variability-weights’ proceed after the weights have been fully 

trained. The variability-weights are updated according to the rule 

ijik
k

ij wtMaxv −=
= 6,1

       

where tik is the ith input component of kth vector. Initially the values of these ‘variability-weights’ 

are set to zero. Components ‘tik’ are compared with its corresponding weight component ‘wij’ for 

user ‘j’, the current training user. If the absolute difference between them is greater than the 

present ‘variability-weight’ value, then this value is set to be the current ‘variability-weight’ 

value.  

//Algorithm to train the NN.
Train_NN (array of Input vector T , user no 'j')  
{

Wj = T1; //Initialize the weight to first vector for faster convergence.
Do //Train the weights.
{

for each input vector Ti
{

Wj = Wj(old) + ηtrain ( Ti - Wj); //update the weights.
} 
ηtrain = ηtrain * α ; //decrease ηtrain by α

} //do until the weights so not show significant increase. 
While (difference in wt update is not greater than ‘Error’);
//train the ‘variability-weights’
Vj = {0}; //initialize ‘variability-weights’ to zero.
For each input vector Ti //repeat for each input vector.
{

for each component in the input //k = 1 to 69
{

diff = abs(tik - wkj ); //find the absolute difference between the input and the current wij
if(diff is greater than vkj)
{

vkj = diff;   //set vij to current difference.
}

}
}

}//end of training.  
Figure 3. NN algorithm for training a users’ cluster given the array of reference patterns Ti. 
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Figure 4 shows the algorithm for classification phase. During classification a single 

vector G forms the input. The users’ node Yj is classified as true (1) by the following rule.  

⎪⎩

⎪
⎨
⎧ <−=

otherwise
vSFwgifc ijiji

i 0
*1   

⎩
⎨
⎧ >=

=
icatednotauthentotherwise
ticateduserauthenPFGif

y j //0
//691  Where |G| denotes the number of 1’s in G.  

Here C is a vector indicating the number of components of input that fall within the 

cluster boundary as defined by Vj and SF. We denote input vector as T (six samples) during 

training and G (one sample only) during classification. Each input component gi is compared 

with the stored weight component wij, for jth user, and its absolute difference value computed. 

This absolute value is compared with a scaled ‘variability-weight’. If the difference is within the 

scaled ‘variability-weight’, then the key-pattern for this component is matched. The ‘variability-

weight’ is scaled by ‘scale-factor’ times (SF). This value signifies the amount of variability to be 

allowed in user’s typing pattern while classification. A higher value allows more variability in 

user’s typing pattern, but also increases the chances of impersonation. A lower value indicates 

tightened typing behavior, making them to be same as entered in training.  

The user is classified if his percentage of ‘pattern matches’ is greater than a preset value 

of ‘percentage-success’ (PS). That is if the ‘percentage-success’ is set to be 90% then the user’s 

total individual pattern matches (gi with scaled vij) must be 90% or greater. This factor allows the 

tightening of security of the system. A higher value results in lesser error but increases FAR. A 

lower value reduces the FAR while increasing error. If a user is successfully classified, then the 

weights of the NN are updated with ηclassify, the value of η during classification.   
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 bool ClassifyUser(Input vector G, user no ‘j’)  
{ 

count = 0; //initialize the counting variable.
for each component  g i in the input vector
{ 

diff =  abs(g i - w ij );  //find the absolute difference between the component and the wei ght component.
if ( diff <= SF *  v ij ) //check id this value falls within the range of the cluster. 
{ 

count++; //keep count of this success.
} 

} 
If( (count/69) >= ‘percentage - success’) //check to see if percentage of this count is within the range specified.
{ 

authenticate = true; //authenticated the users.
W j =  W j (old ) +  η classify ( G  - W j ); //update the weights.

} 
else  
{ 

authenticate = false; //user not authenticated.
} 
return authenticate; //return true or false

}//end of classification. 
 

Figure 4. NN algorithm for classifying (and adapting) a user given the key-pattern input vector G 

 

3. RESULTS 

A total of 43 users took part in providing reference signatures. Apart from providing 

reference signatures for training the NN, every user participated in providing login samples and 

impersonating others. A total of 873 login samples were collected, out of which 216 samples 

were authentic samples—users trying to login providing correct user-id and passwords, and 657 

imposter samples—users trying to impersonate others. We use two measures during 

classification, Imposter Pass Rate (IPR) and False Authentication Rate (FAR). IPR is the ratio of 

successful impersonation samples over the total impersonation samples. FAR is the ratio of 

wrong rejection of authentic samples over total authentic samples.  

Table 1 shows IPR and FAR as SF and PS are varied. IPR increases, as SF and PS are 

increased; FAR decreases faster when PS is reduced. The optimal result we get is an IPR of 

1.36% (9 out of 657 samples) and an FAR of 2.31% (5 out of 216 samples). The best result is to 

have 0% IPR with least possible FAR. An ideal situation is to have minimum IPR with minimum 

FAR. In our experiment we achieve 0% IPR with 60% FAR. For an IPR of 0.3%  (2 error out of 
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657) FAR is 18.5% (40 out of 216). We varied SF and PF from 0.1 to 3.0 in increments of 0.1 

and validated the results during validation phase.  

Table 2 shows the results with different combinations of user-id, password, and common 

string. Having a common-string and considering KPT, KLKPT, KLKRT decreases IPR with 

better FAR rates. Considering user-id, password, and common-strings with KP, KLKPT, and 

KLKRT yield better results for the same set of optimal parameters. Table 3 compares our results 

with the results of other methods.  

Table 1. Varying results of IPR and FAR with PS and SF varied at ηclassify = 0.001, ηtrain = 0.4, 
and α = 0.5 

SF 1.5 1.75 2 2.3 3 1.5 1.5 1.5 1.5 
PS 0.9 0.9 0.9 0.9 0.9 0.85 0.8 0.75 0.7 
IPR (%) 0 0 0.15 0.15 1.21 0.15 0.15 1.06 2.28 
FAR (%) 89.9 73.61 49.53 38.88 12.5 56.01 36.11 7.87 2.31 

 

Table 2. IPR and FAR for different types of experiments with parameters SF = 1.9, PS = 0.77, 
ηclassify = 0.001, ηtrain  = 0.4, and α = 0.6 

Experiment 
 Type 

Name, password, and 
Common-string 

Name and 
password only

Name and 
password 
(KLKRT) 

Name, Password, 
common-string  
(KLKRT) 

IPR (%) 1.36 2.13 4.41 3.19 
FAR (%) 2.31 18.98 29.62 14.35 
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Table 3. Comparison of results with other existing methods. 

 
Method Our 

Method 
J. 
Leggett 
and G. 
William
s 
[LW88] 

S 
Bleha, 
et al. 
[BSH9
0] 

J. 
Leggett 
et al. 

D. Umpress 
and G. 
Williams 
[UW85] 

M. Brown 
and S. 
Rogers 
[BR93]   

R. Joyce 
and G. 
Gupta 
[JG90] 

B
es

t 
re

su
lt 

IPR (%) 0.3 (2 out 
of 657) 

- - - - 0 0 

FAR 
(%) 

18 - - - - 12 40 

O
pt

im
al

 
R

es
ul

t 

IPR (%) 1.36 (9 
out of 
657) 

2.7 2.8 5 6 - 0.25 

FAR 
(%) 

2.31 12.2 8.1 5.5 12 - 16.36 

 
4. CONCLUSION 

Significant features of our approach include (1) addition of dispersion vector to define 

keystroke regions, (2) adaptation to changing typing patterns, (3) ease in addition and deletion of 

users, and (4) unique derivation of input vectors. We are extending this work to define tighter 

boundaries for vector V that will result in improved results. 

 

Abstract: We develop a system consisting of a neural architecture resulting in classifying regions 

corresponding to users’ keystroke patterns. We extend the adaptation properties to classification 

phase resulting in learning of changes over time. Classification results on login attempts of 43 

users (216 valid, 657 impersonation samples) show considerable improvements over existing 

methods.  
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EXEMPLARY CLAIMS 

 

1. A method of authenticating the user of a secure system, comprising: 

training a neural network to recognize the keystrokes of an authorized user; and 

analyzing the keystrokes of a potential user to determine if they are authorized to use the 

system. 

 

2. The method of claim 1, wherein neural network utilizes two types of connections:  

(1) weight vector W and (2) dispersion vector V; and 

wherein in the training phase, the weight vector W adapts to users’ keystroke exemplars, 

and dispersion vector V adapts to dispersion in the users’ keystrokes. 

 

3. The method of claim 1, wherein a user is asked to submit particular information to 

train the neural network. 

 

4. The method of claim 3, wherein the particular information includes a 

predetermined string of keystrokes. 


